Filozofia matematyki Fragment z klasyka

Bernard Bolzano: Paradoksy nieskończonych mnogości

Fragment z klasyka — Bernard Bolzano — Paradoksy nieskończoności

Źródło: B. Bolzano, Paradoksy nieskończoności, przeł. L. Pakalska, Warszawa: PWN 1966, s. 31–32.


Dwie mnogości, obie nieskończone, mogą pozostawać względem siebie w takim stosunku, że z jednej strony każdy element należący do jednej z tych mnogości można złączyć w parę z jednym elementem drugiej, tak że żaden element którejkolwiek z nich nie pozostaje bez włączenia go w parę, jak również żaden nie powtarza się w dwu lub więcej parach, z drugiej jednak strony możliwe jest przy tym, że jedna z tych mnogości zawiera drugą jako pewną część jedynie, tak iż zatem wielości, które one przedstawiają, pozostają w najróżniejszych wzajemnych stosunkach, jeżeli wszystkie ich rzeczy składowe traktujemy jako równe, tj. jako jednostki.


Pobierz tekst w PDF.

Najnowszy numer filozofuj "Kłamstwo"

Skomentuj

Kliknij, aby skomentować

Wesprzyj „Filozofuj!” finansowo

Jeśli chcesz wesprzeć tę inicjatywę dowolną kwotą (1 zł, 2 zł lub inną), przejdź do zakładki „WSPARCIE” na naszej stronie, klikając poniższy link. Klik: Chcę wesprzeć „Filozofuj!”

Polecamy